Persoonia – Volume 44, 2020 Fungal Planet description sheets 413 Fungal Planet 1090 – 29 June 2020 ## Mallocybe crassivelata Ferisin, Bizio, Esteve-Rav., Vizzini & Dovana, sp. nov. Etymology. From the Latin crassus (thick) and velatus (with a veil), referring to the presence of a thick, abundant veil on the pileus surface. Classification — *Inocybaceae*, *Agaricales*, *Agaricomycetes*. Basidiomata stipitate. Pileus 20-40 mm diam, at first convex, then applanate to plano-convex, without umbo, with an inflexed margin when young, fibrillose-tomentose to woolly-tomentose, sometimes scaly, when moist almost smooth; initially ochraceous yellow (Mu 10YR 6/6) to ochraceous brown (Mu 7.5Y 8/4), brown with an olivaceous tinge when moist, sometimes fulvous orange (Mu 7.5YR 3/6) at disc; in young basidiomes with a thick, white velipellis. Lamellae rather crowded to crowded (L = 48-85), with lamellulae (I = 0-1), adnexed to arcuate, sometimes subdecurrent, initially pale ochraceous with a faint olivaceous hue, then brown; edge whitish to concolourous. crenulate. Stipe 25-40 × 3-6 mm, cylindrical, solid, then becoming fistulose, pale yellow to concolourous with pileus in aged basidiomes; surface fibrillose, white towards the base for the presence of a white velipellis; white cortina present in young basidiomes. Context yellowish in pileus, somewhat and ochraceous brownish in stipe. Smell earthy sometimes mixed with a subspermatic component. Taste indistinct. Basidiospores $(7.7-)8.3-8.7-9.2(-11.4) \times (3.9-)4.7-5-5.2(-5.9)$ μ m, Q = (1.5–)1.67–1.76–1.85(–2.1), smooth, yellowish, very variable in shape, ellipsoid to subphaseoliform, sometimes amygdaliform in side view with obtuse or sub-ogival apex; presence of anomalous long spores (over 11 µm, probably discharged from bisporic basidia), walls up to 0.5 µm thick. Basidia $(20-)22.7-26.3(-27) \times (7.7-)8.2-9.4(-9.9) \mu m$, clavate to cylindrical, 4-spored, sometimes 1-2-spored, with inner olivaceous guttulae and brown necropigment, sterigmata up to 3 µm long; sometimes they are rarely present on lamella edge. Hymenophoral trama regular, formed by cylindrical to ellipsoidal, 10-16 µm wide elements, with a brownish wall; subhymenium consisting of up to 100 µm long elements, 7–13 µm wide. Cheilocystidia very numerous, (14.3–)18–28.2(–32.6) \times (6.1–)7.9–11.4(–14.7) µm, hyaline, usually thin-walled, very variable in shape, cylindrical, oblong to clavate, with a few septa; mixed with basidia. Pleurocystidia absent. Caulocystidia present at stipe apex (1/4), at least partly catenulate with terminal element as true cystidium, from ellipsoid to ovoid, up to 25 µm long. Pileipellis an undifferentiated cutis with some ascending hyphae; terminal elements cylindrical to subcylindrical, $50-110 \times 7-14 \mu m$, with ochraceous-brown parietal pigment. Clamp-connections present. Habitat & Distribution — Gregarious in deciduous (*Fagaceae*) or coniferous (*Picea abies*, *Pinus sylvestris*) forests. So far known from Italy, Slovenia and Spain. Typus. SLOVENIA, Pregarje, 710 m asl, under Fagus sylvatica, 28 June 2014, G. Ferisin (holotype MCVE 29561; ITS and LSU sequences GenBank MN536812 and MN537138, MycoBank MB832767). Additional materials examined. ITALY, Veneto, Belluno, Falcade, 1148 m asl, in *Picea abies* forest, 11 Oct. 2001, *E. Bizio*, MCVE 21499; ITS sequence GenBank MN536813. — SPAIN, Community of Galicia, Province of Orense, Cambela, 29TPG5280, 900 m asl, in *Castanea sativa* forest, 20 Oct. 1999, *F. Esteve-Raventós, M. Villarreal & F.D. Calonge*, AH 29788; ITS sequence GenBank MN536810; Community of Madrid, Rascafría, 24 June 1993, in mixed forest of *Quercus pyrenaica* and *Pinus sylvestris*, *A. Guerra & G. Moreno*, AH 46622; ITS sequence GenBank MN536811. Notes — Terminology for descriptive terms is according to Kuyper (1986) and Vellinga (1988) and colour codes are taken from Munsell (1994). In our phylogeny M. crassivelata belongs to a well-supported clade (bootstrap support value = 88 %) together with M. leucoloma, M. malenconii, M. myriadophylla and three sequences of 'Uncultured Inocybe sp.' (GenBank JX630703, JX630710, JX630716) from the USA and associated with Dryas integrifolia. Mallocybe crassivelata shows, as major morphological features, a rather fleshy, predominately ochraceous basidioma, fibrillose-tomentose to woolly-tomentose pileus covered with a thick white velipellis, narrow subphaseoliform spores and an earthy smell (similar to that of Inosperma cervicolor) often associated to a subspermatic component, though in some collections (AH 29788) nearly indistinct. Mallocybe leucoloma differs from the new species mainly by a smaller and slender habit, different shape of cheilocystidia (often pyriform), sub-odourless context and being associated with dwarf Salix or Dryas (Kühner 1988). Mallocybe malenconii can easily be distinguished by its longer spores $(9-12 \times 4-5.5)$ μm) with mean Q-value of c. 1.95 (Vauras & Larsson 2011) and an indistinct smell (Heim 1931). Compared to M. crassivelata, M. myriadophylla has a pale grey cortina, very narrow and crowded lamellae (-4 mm wide), smell 'indistinct to somewhat fungoid and slightly metallic' and seems strictly associated with Betula pendula (Vauras & Larsson 2011). Mallocybe hebelomoides is characterised by a smaller size, broadly elliptical to subovoid spores with Q =1.4-1.6 and habitat under dwarf Salix species (Kühner 1988). Finally, M. pallidotomentosa, so far known only from Germany, is morphologically quite close to M. crassivelata, but differs mainly in growing under Populus tremula and Betula sp. (Ludwig 2017) and by a different ITS sequence (Ditte Bandini, pers. comm.). Colour illustrations. Pregarje, Slovenia, Fagus sylvatica forest. Mallocybe crassivelata basidiomata in habitat; basidiospores; caulocystidia; basidia and cheilocystidia. Scale bars = 10 μ m. ## Supplementary material **FP1090** Maximum-likelihood analysis of the combined *nrITS* and *nrLSU* regions was performed with RAxML v. 8.2.11 (Stamatakis & Alachiotis 2010) using the GTR+G model in Geneious v. 11.1.4. Francesco Dovana & Samuele Voyron, Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125, Torino, Italy; e-mail: francesco.dovana@unito.it & samuele.voyron@unito.it Alfredo Vizzini, Institute for Sustainable Plant Protection (IPSP) – CNR, Viale P.A. Mattioli 25, 10125, Torino, Italy; e-mail: alfredo.vizzini@unito.it Giuliano Ferisin, Via A. Vespucci 7, 1537, 33052 Cervignano del Friuli (UD), Italy; e-mail: gferisin@alice.it Fernando Esteve Raventós, Departamento de Ciencias de la Vida, Universidad de Alcalá, Campus universitario 28805, Alcalá de Henares (Madrid), Spain; e-mail: fernando.esteve@uah.es